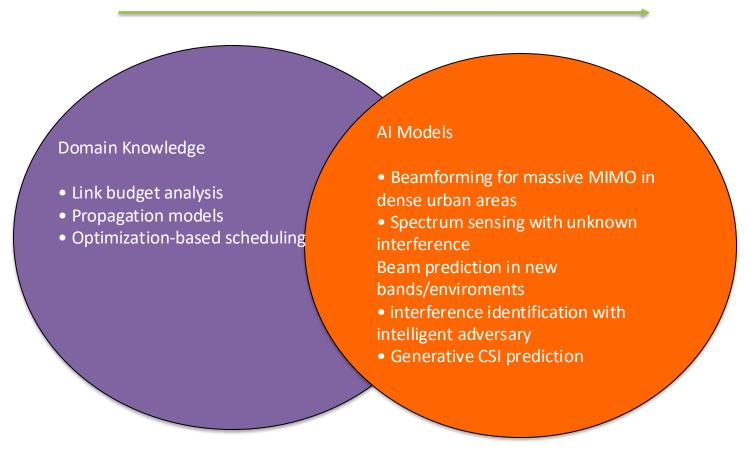
Advancing Spectrum Science: Rely on Domain Knowledge or Handoff to Machine Learning Models?


Fatemeh Afghah
Associate Professor, Department of Electrical and Computer Engineering
Director, Intelligent Systems and Wireless Networking (IS-WiN) Lab.
Clemson University

Al vs Domain Knowledge in Communication systems

Hybrid (Gray Zone)

- Physics-Informed Neural Networks
- Al-augmented channel estimation
- Human-in-the-Loop Reinforcement Learning

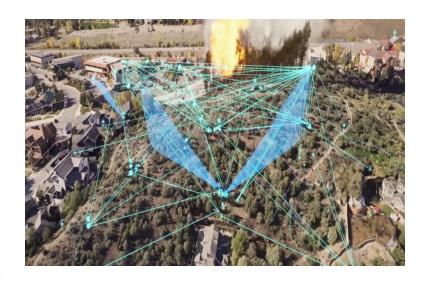
From Images and Robots to Wireless: What Tasks Shaped Foundation Models?

NLP	CV	Robotics	Communications
 General-purpose reasoning Summarization, QA, dialog Few-shot and zeroshot generalization Agent frameworks 	 Joint embedding with text (CLIP) Image retrieval & recognition Visual Question Answering (VQA) Segmentation (object boundaries, SAM) 	 Object detection & pose estimation Waypoint planning in cluttered environments Skill learning & transfer across tasks Embodied VLMs (language → action) 	 Spectrum sensing & interference ID (belownoise detection, real-time classification) Cross-layer multiobjective optimization (RL) Network digital twins Beam management in massive MIMO
Led to GPT, Gemini, LLama	Led to ViT, CLIP, BLIP, SAM	GENESIS,Gato, Dearmer, Muze	???

CV/NLP/Robotics \rightarrow labels and tasks drove foundation models.

In Communications → the physics itself is the task. Needing models that respect causality, propagation laws, and real-time constraints.

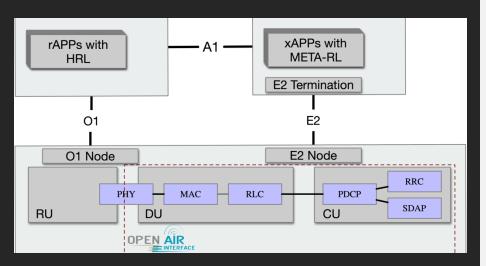
Pretraining Foundation Models for Wireless


- Physics is the data generator. We don't have semantic labels for "channel images," but we do have exact constraints (superposition, reciprocity, passivity, sparsity in angle-delay, WSSUS, path-loss scaling, Doppler structure).
- Hard real-time and control coupling. Inference must feed decisions (beam, scheduling, handover, RIS phase) at sub-ms scales.
- Multi-view measurements, not captions. We often have paired but heterogeneous readings: UL/DL reciprocity, adjacent subcarriers/times, neighboring locations, BS/UE antenna domains, ray-tracer vs. measured traces(Time—frequency—space masking, Neighbor contrastive, Sim-to-Real alignment)
- Cross-modal grounding (RF × Vision/LiDAR maps). align channel embeddings with scene geometry (satellite/StreetView/LiDAR) via contrastive loss

Challenges toward Wireless LM

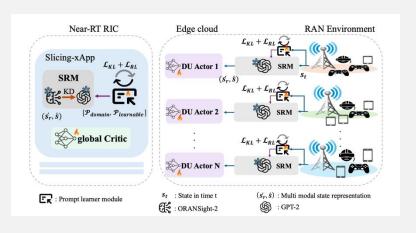
- Scale vs fidelity: LLMs are huge and trained on text; embedding physical laws explicitly can be hard and computationally demanding.
- **Simulators in the loop**: Using external simulators helps, but can limit generality and speed; approximations may degrade with more complex systems.
- Correctness / generalization: Even when models are physics-informed, their physical reasoning can break in edge cases or where the physics is subtle or has many interacting components.
- Training data: Many physics laws are not well represented in text or even multimodal datasets; obtaining appropriately labeled or simulated data is expensive.

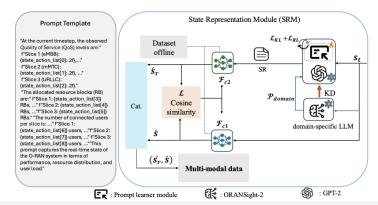
Beyond Communication: Joint Planning & Sensing for Autonomous Swarms in Dynamic Environments

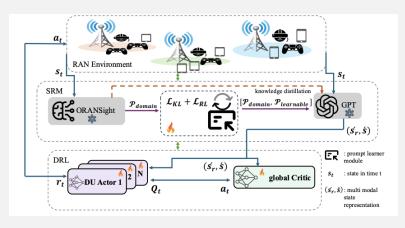


Lack of Prior Information: lack a priori knowledge of new signal types (e.g., new threats)

Lack of Stationarity: complex non-stationary environments


Coupled Problems: Communication is no longer a standalone task. It is intrinsically linked with sensing (e.g., locating a survivor) and planning (e.g., safely routing a UAV swarm). These interconnected problems explode in complexity.


ORAN



- Domain prompts (expert context): ORANSight reads live RAN stats and emits short text prompts that explain the situation.
- Learnable prompts (tuning the LLM): A small set of trainable "soft tokens" is prepended to the domain prompt. These tokens are optimized during training so the frozen GPT turns the mixed input (raw state + domain text) into embeddings that highlight what matters for control.
- Knowledge distillation (lightweight deployment): During training, the student (GPT+learnable prompts) is forced to mimic the teacher (ORANSight) via a distillation loss.

ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing, 2025. LLM-Augmented Deep Reinforcement Learning for Dynamic O-RAN Network Slicing, ICC 2025.

