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AI vs Domain Knowledge in Communication systems

Scale & Complexity 

Domain Knowledge

• Link budget analysis
• Propagation models
• Optimization-based scheduling

AI Models

• Beamforming for massive MIMO in 
dense urban areas
• Spectrum sensing with unknown 
interference
Beam prediction in new 
bands/enviroments
• interference identification with 
intelligent adversary 
• Generative CSI prediction

Hybrid (Gray Zone)

• Physics-Informed Neural Networks 
• AI-augmented channel estimation
• Human-in-the-Loop Reinforcement Learning



From Images and Robots to Wireless: What 
Tasks Shaped Foundation Models?

• General-purpose 
reasoning

• Summarization, QA, 
dialog

• Few-shot and zero-
shot generalization

• Agent frameworks

Led to GPT, Gemini, LLama

• Joint embedding with 
text (CLIP)

• Image retrieval & 
recognition

• Visual Question 
Answering (VQA)

• Segmentation (object 
boundaries, SAM)

Led to ViT, CLIP, BLIP, SAM

• Object detection & 
pose estimation

• Waypoint planning in 
cluttered 
environments

• Skill learning & 
transfer across tasks

• Embodied VLMs 
(language → action)

GENESIS,Gato, Dearmer, 
Muze

• Spectrum sensing & 
interference ID (below-
noise detection, real-time 
classification)

• Cross-layer multi-
objective optimization 
(RL )

• Network digital twins

• Beam management in 
massive MIMO

???

CV/NLP/Robotics → labels and tasks drove foundation models.

In Communications → the physics itself is the task. Needing models that respect 
causality, propagation laws, and real-time constraints.

NLP CV Robotics Communications 



Pretraining Foundation Models for Wireless

• Physics is the data generator. We don’t have semantic labels for “channel 
images,” but we do have exact constraints (superposition, reciprocity, 
passivity, sparsity in angle–delay, WSSUS, path-loss scaling, Doppler 
structure).

• Hard real-time and control coupling. Inference must feed decisions 
(beam, scheduling, handover, RIS phase) at sub-ms scales.

• Multi-view measurements, not captions. We often have paired but 
heterogeneous readings: UL/DL reciprocity, adjacent subcarriers/times, 
neighboring locations, BS/UE antenna domains, ray-tracer vs. measured 
traces(Time–frequency–space masking , Neighbor contrastive, Sim-to-Real 
alignment)

• Cross-modal grounding ( RF × Vision/LiDAR maps). align channel 
embeddings with scene geometry (satellite/StreetView/LiDAR) via 
contrastive loss



Challenges toward Wireless LM

• Scale vs fidelity: LLMs are huge and trained on text; embedding physical 
laws explicitly can be hard and computationally demanding.

• Simulators in the loop: Using external simulators helps, but can limit 
generality and speed; approximations may degrade with more complex 
systems.

• Correctness / generalization: Even when models are physics-informed, 
their physical reasoning can break in edge cases or where the physics is 
subtle or has many interacting components.

• Training data: Many physics laws are not well represented in text or even 
multimodal datasets; obtaining appropriately labeled or simulated data is 

expensive.



Beyond Communication: 
Joint Planning & Sensing 
for Autonomous Swarms 
in Dynamic Environments

Lack of Prior Information: lack a priori 
knowledge of new signal types (e.g., new 
threats)
Lack of Stationarity:  complex non-stationary 
environments
Coupled Problems: Communication is no 
longer a standalone task. It is intrinsically linked 
with sensing (e.g., locating a survivor) and 
planning (e.g., safely routing a UAV swarm). 
These interconnected problems explode in 
complexity.



ORAN

ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented 
Reinforcement Learning in O-RAN Network Slicing, 2025.
LLM-Augmented Deep Reinforcement Learning for Dynamic O-RAN 
Network Slicing, ICC 2025.

• Domain prompts (expert context): ORANSight reads live 
RAN stats and emits short text prompts that explain the 
situation.

• Learnable prompts (tuning the LLM): A small set of 
trainable “soft tokens” is prepended to the domain 
prompt. These tokens are optimized during training so the 
frozen GPT turns the mixed input (raw state + domain 
text) into embeddings that highlight what matters for 
control.

• Knowledge distillation (lightweight deployment): During 
training, the student (GPT+learnable prompts) is forced to 
mimic the teacher (ORANSight) via a distillation loss.
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